
SERP Connect

Aug 21, 2018

Developer Documentation

1 Getting Started 3

2 Contributing 7

3 Development 9

4 Testing 13

5 Graph 15

6 API 17

7 Documentation 39

8 Sessions 41

9 Trust 43

10 Collections 45

11 Import 47

12 Export 49

13 Admin 51

14 Import 53

15 Installing 55

16 Performance 57

HTTP Routing Table 59

i

ii

SERP Connect

This is documentation for SERP Connect, here you can find docs detailing the inner and outer workings of the SERP
Connect backend and frontend.

Developer Documentation 1

https://serpconnect.cs.lth.se/
https://github.com/emenlu/connect/
https://github.com/emenlu/website/

SERP Connect

2 Developer Documentation

CHAPTER 1

Getting Started

This file is dedicated to getting you ready to start developing. If you have questions, head over to our slack channel
and fire away!

1.1 Backend

We start with the backend, simply because it is required for you to have any functionality on the frontend. A high-level
checklist is:

• install java 8 (sdk & jre)

• install maven version 3

• install neo4j version 2.X.Y

• logon localhost:7474 and change password

• update password in application.properties in repo.

• start with mvn exec:java -Dpippo.mode=dev

1.1.1 Setting up the backend

java 8

Java 8 (SDK & JRE) is required. Almost all os have a standard way of installing and upgrading java. These guides
may work for you, but ideally you should look it up.

Test if you already have java 8 by running (any os):

• JRE: java -version

• SDK: javac -version

ubuntu/debian

3

https://serp-group.slack.com

SERP Connect

• JRE: sudo apt-get install default-jre

• SDK: sudo apt-get install default-jdk

windows: Download the JRE and SDK from oracle.

os x/mac os: install homebrew, then brew install java

other linux

• try the default package manager

• otherwise check this out

neo4j

Install the community edition, version 2.3.X where X is the highest you can find. Again, the installation process
depends on your os/environment. Here is the official documentation. Below are summaries:

ubuntu/debian

• install neo4j via apt-get (instructions)

• run system neo4j start to start

• run system neo4j stop to stop

windows

• download the installer (.exe) from legacy

• run it and install neo4j

• start & stop neo4j using the neo4j-ce.exe program

mac

• download the neo4j dmg from legacy

• drag neo4j to your applications folder

• use that program to start & stop a neo4j server

other linux

• download a binary from legacy

• untar it tar -xzf <neo4j-download.tar.gz>

• run pwd to get current working directory

• run echo 'export $PATH=/full/path/to/neo4j-download/bin/:$PATH' >> ~/.
profile

• run source ~/.profile

• now your current and all new shells will be able to run the neo4j script

• run neo4j start and neo4j stop to start & stop, respectively

After installation you should start a neo4j server and navigate to http://localhost:7474 and login using
neo4j/neo4j. Choose a new password, and remember it. You will need it later on.

4 Chapter 1. Getting Started

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://brew.sh/
http://openjdk.java.net/install/
https://neo4j.com/docs/operations-manual/current/installation/
http://debian.neo4j.org/
https://neo4j.com/download/other-releases/
https://neo4j.com/download/other-releases/
https://neo4j.com/download/other-releases/

SERP Connect

maven

Maven is a java package manager, amongst other things. We use version 3.

mac: install homebrew, then brew install maven30

general

Try your luck with the package manager, otherwise these links are handy:

• download

• install

1.1.2 First steps

After all required software has been installed you are ready to proceed.

• Strap up! cd ~

• Organise mkdir connect && cd ~/connect

• Clone git clone git@github.com:emenlu/connect.git backend

• Charge in cd backend

• Open src/main/resources/conf/application.properties in your editor of choice

• Change neo4j.password to what you entered previously in the web ui

• Then run mvn compile exec:java

• The backend will now create a superuser and initialize the database. (Make sure neo4j is running!)

Et voilà, you are ready!

In the future, run mvn compile exec:java -Dpippo.mode=dev. It executaes both commands sequentially
and launches the server in dev mode.

1.1.3 Eclipse

To use Eclipse, simply import the backend files as a github repository. We recommend using a maven plugin to
facilitate running the server.

1.2 Frontend

The frontend project is often much simpler to install since it only depends on nodejs, thus this section is mainly on
how to install nodejs. The high-level checklist is:

• install nodejs (v5 or v6)

• run npm install in repo.

• run make dev

• browse to localhost:8181

1.2. Frontend 5

https://brew.sh/
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

SERP Connect

1.2.1 Setting up the frontend

installing nodejs

The frontend relies on nodejs to compile page templates and style files. Node.js has its own package manager, called
npm, which lists dependencies in a package.json file. Thus the only programs you need to manually install are
npm and node. Thankfully, npm is bundled with node so installing node is sufficient.

Type node -v in a terminal to check version:

• v5 and v6 are confirmed to work with the connect frontend

• v7 and v8 are unknown

If you already have node v7 or v8 then you should install a version manager to switch between multiple version. Here
are a few, though some only support specific operating systems:

• nvm

• n

• nvs

The actual steps for installing Node.js vary depending on your operating system.

windows: Download the installer and run it. It will install node and npm and put them in your %PATH%.

mac os: Install with homebrew. brew install node@6

linux

Most popular linux distros have up-to-date packages of node and this is the easiest way to install nodejs. There is a
guide here on doing this.

If this fails you must download a tarball and put node and npm into /usr/bin or similar. Some linuxes have a
program called alternative to symlink files into /usr/bin.

installing packages

Type npm install in the repository to install all dependencies. Then try to run the dev. server using make dev.
If this fails, report to Axel. Otherwise you are good to go!

6 Chapter 1. Getting Started

https://github.com/creationix/nvm
https://github.com/tj/n
https://github.com/jasongin/nvs
https://brew.sh
https://nodejs.org/en/download/package-manager/

CHAPTER 2

Contributing

This file is mirrored here.

2.1 Licensing

connect is licensed under the BSD 2-clause license.

2.2 Documentation

All documentation is avaiable at readthedocs for developer guides.

Join our slack channel for questions and other stuff!

2.3 Depedencies

Connect itself is mainly built on pippo and jcypher but requires some tools to actually compile/test:

• maven 3.X.Y (website)

• java 1.8

• neo4j 2.X.Y (website)

For more information about getting started, see the documentation.

2.4 Versioning strategy

The master branch receives all development work via merges from feature branches. New releases are tagged
according to semantic versioning.

7

https://raw.githubusercontent.com/emenlu/connect/master/CONTRIBUTING.md
http://serpconnect.rtfd.io
https://serp-group.slack.com
https://pippo.ro
https://github.com/Wolfgang-Schuetzelhofer/jcypher/wiki
https://maven.apache.org/index.html
https://neo4j.com/download/other-releases/
http://semver.org/

SERP Connect

2.5 Contributions

There are primarily two ways you can contribute to connect:

• Issues: Post bug reports, feature requests and code changes as issues to the github repo.

• Pull requests: Well-defined (fixes one issue) pull requests are happily accepted as long as they pass the test
suite. If you fix bugs please provide a test case to combat regression.

2.6 The procedure

• Pick the issue: It is recommended to pick existing issues but we accept contributions not related to any issue.
After picking an issue, please comment and state something like “hi, i’m calling dibs on this one”. This will
allow people with access to update status flags and what not to reduce risk of collisions.

• Begin by preparing for work:

• Make sure your master is in sync: git checkout master && git pull upstream master

• Make a feature branch: git checkout -b feature-branch

• Work work and make commits

• After that sweet sweet code we suggest you test: mvn clean verify

• If, for some reason, the test doesn’t work don’t worry too much - the CI will test for you

• It’s time to prepare for pull request:

• Again, make sure master is up-to-date: git checkout master && git pull upstream master

• Forward your branch: git checkout feature-branch && git rebase master

• Push to your repo: git push origin feature-branch

• Make pull request from github.

2.7 Landing the PR

• Please refer to the relevant issue and provide a clean description of your solution.

• It is recommended (but not required) to rebase your commits into a clean flow (to simplify review)

• Mention @emenlu when your PR is ready and she will assign someone to poke at it

2.8 Students @ LTH

For students at LTH, Lunds University there exists a public Trello board here. Tasks from this board can give you
some $$$ when completed.

8 Chapter 2. Contributing

https://github.com/emenlu/connect/issues/
https://www.myinstants.com/instant/warcraft-peon-work-work/
https://trello.com/b/5h2wb7wz/connect-open-tasks

CHAPTER 3

Development

A quick intro on what you might want to know when starting backend or frontend development.

3.1 Backend

The core application logic resides in the backend. We strive to keep the backend logic as simple as possible.

3.1.1 Backend dependencies

• maven version ~3

• java sdk version ~1.8

• neo4j version ~2.6

3.1.2 Backend design

Here is an overview of the different components that make up the backend. Each box corresponds to a java package
with a similar name.

• Connect initializes the server modules (se.lth.cs.connect.modules.*) and routes (se.lth.cs.
connect.routes.*)

• General database queries are executed by Database. Queries are built using jcypher helpers.

• Specialized database queries should be hidden by an interface, e.g. login/authetication logic is implemented in
AccountSystem.

• The two exceptions (DatabaseException.java and RequestException.java) are thrown by han-
dlers and handled by a function in Connect.java, like a bubble-style event.

9

SERP Connect

• Event cascading is explicitly specified in the se.lth.cs.connect.events package and related classes.
Example: when an entry is deleted orphaned facets should also be deleted. Not
all user-initiated actions have an associated event and events should be added thoughtfully and sparingly as they
increase overall systematic complexity.

3.1.3 Backend tips

Here are some tips new contributors might appreciate:

• We use a graph-database called Neo4j. The quickest way to get up to speed of what it is and how it works is to
visit their website.

• Neo4j runs a graphical interface located at http://localhost:7474/browser/. This very helpful to
try and prototype commands and later to see if correct connections and data was added to the database.

• jcypher is used for querying the database from the backend much like SQL but with different syntax. The
documentation is somewhat limited but there are examples on their github wiki. You should probably look at
how things are done in the connect.routes package before trying your luck at the wiki, though. Note that jcypher
can’t always translate a Neo4j query directly.

• The application.properties file has to be updated with the correct username and password for neo4j
database.

3.2 Frontend

3.2.1 Frontend dependencies

• node js version 5, 6 or 7 (confirmed working)

3.2.2 Frontend overview

Here is an overview of the different components that make up the frontend.

The structure is quite straightforward:

• We use jade, less and js to make up the webpages. The less and js files both have a base file which they
are dependent on, then each page sub-levels down to have it’s unique properties which the rest of each pages
sub-levels depend on.

• Jquery v3 is used and is imported via the base class so this is standard across all pages.

• For styling, LESS is used. Structurally we have a working files folder which divides the pages up and then it is
imported into an all.less file which is converted into one CSS file.

• There are two api files: api.js and api-dev.js. The api-dev.js file only changes the server to which
the ajax queries from api.js are made.

3.2.3 Frontend tips

• It can be important to run make clean every now and then to be sure nothing is cached and the changes im-
plemented are what you have made. make clean is run automatically when running any make command.

• There are a few utilities which are used across some of the pages. They can be found in src/js/util.

10 Chapter 3. Development

SERP Connect

• One example is el.js which is used to efficiently create elements. It is encouraged to use these utilities where
possible to keep the coding consistent.

• There is no need to (re)build after modifying any files. Simply save the file and reload localhost website to see
the changes.

• If you add new views, then add them to app.js.

• If you add new LESS files, add them to src/less/all.less.

3.2. Frontend 11

SERP Connect

12 Chapter 3. Development

CHAPTER 4

Testing

Connect relies on a number of test steps:

• maven integration tests (unit tests are supported)

• circleci continuous integration link on commits and pull requests

• codecov coverage reports link generated with jacoco

In addition to the integration testing and coverage reporting done by circleci developers are also expected to test their
changes locally. The maven commands are:

• run unit tests only: mvn test

• clean target/, run unit tests and then integration tests: mvn clean verify

During integration testing an included neo4j server will automatically be started. An error will be thrown if a unit
test case tries to access a route that queries the database. The database is not ephemeral, but lives in the target/
directory. Most tests will create stuff in the database and will run into problems if entries, collections or users already
exists. This is why it is recommended to run clean before verify.

4.1 Writing test cases

The connect backend is tested using the pippo module pippo-test (link).

There are some additional modules that are used to facilitate easier testing of expected behaviour.

• Some API actions will send an email. It is possible to use a mock MailClient, such as Mailbox to capture
and verify mails.

• A URLParser class helps with link extraction.

4.2 Detecting test files

A test file is run during unit testing if it matches *Test.java or Test*.java.

13

https://circleci.com/gh/emenlu/connect
https://codecov.io/gh/emenlu/connect
http://www.pippo.ro/doc/testing.html

SERP Connect

Integration tests are matched with IT*.java and *IT.java.

14 Chapter 4. Testing

CHAPTER 5

Graph

5.1 User

Accounts are stored in the neo4j graph, labeled with user. The account identity is the email used to sign up (and later
verify account). Passwords are hashed with scrypt @ standard settings (N = 16384, R = 8, P = 1) and transmitted in
plain-text. (Use HTTPS!)

5.2 Project

A project is represented as a graph node with a project label. Projects are the basic premise on which collections
expand. Each project has a taxonomy.

5.3 Collection

A collection is represented as a graph node with a collection label. Collections are the main and only way of
organizing entries and are mainly identified by a combination of their unique id and non-unique (user provided) name.
Each collection has a (potentially nil) set of taxonomy extensions of the base taxonomy (provided by the project).

5.4 Entry

An entry is represented as a graph node with a entry label. Each entry has an additional entry type label: research
or challenge. Entry nodes contain the properties specific to the entry type. They also have relations to their entities.
The relationship type is the taxonomy classification, e.g :ASSESSING.

15

SERP Connect

5.5 Entity / Facet

An entity is represented as a graph node with a facet label and is the free text sample of at least one entry. The
relation type between an entry and facet determines the classification of that entity (text sample) for that specific
entry. Many entries can classify the same entity, even with different classifications.

5.6 Token

A token is represented as a graph node with a token label. Tokens are in fact a special type of authentication
nodes. Tokens are given meaning by their relation to the user node. At the moment only two relation types exist:
EMAIL_TOKEN and RESET_TOKEN for email verification and password reset, respectively. At the moment tokens
don’t expire (but they probably should).

16 Chapter 5. Graph

CHAPTER 6

API

This is the specification of the public API.

Status codes are generally:

• 200: ok

• 400: something wrong with the request

• 401: authentication error

• 404: not found

• 500: server or database error

If an endpoint has parameters they are required for the request to success (otherwise a 400 is thrown). A parameter
not found in the URL should be sent in the request body as application/x-www-form-urlencoded. Some
endpoints require input as JSON. The endpoint description will include a special JSON Request object if JSON is
required.

6.1 Project

A project specifies the default taxonomy which collections can extend. Usually each project is hosted on a different
website.

{
"name": "serp",
"link": "http://serpconnect.cs.lth.se"

}

Where name is a unique (across backends) project name and link a url to the website of the project.

17

SERP Connect

6.1.1 Query projects

GET /v1/project
Get a list of all known projects.

Example response:

{
"projects": [PROJECT]

}

Response JSON Object

• projects (array) – An array of Project objects.

Status Codes

• 200 OK – ok, return taxonomy

6.1.2 Create new project

POST /v1/project
Create a new project listing.

Parameters

• name (string) – unique, alphanumeric name ([a-zA-Z0-9])

• link (string) – url to website of the project

Response Headers

• Content-Type – application/json

Example response:

{
"name": "serp-test",
"link": "http://test.serpconnect.cs.lth.se"

}

Response JSON Object

• name (string) – the name you provided

• link (string) – the link you provided

Status Codes

• 200 OK – ok, echo back the project details

• 400 Bad Request – name/link missing or incorrect name/already taken

• 401 Unauthorized – must be logged in

• 403 Forbidden – only verified users can create projects

18 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

SERP Connect

6.1.3 Query project taxonomy

GET /v1/project/(string: name)/taxonomy
Get a flattened version of the project taxonomy. The flattened graph assumes an implicit “ROOT” node object
as the top parent.

Parameters

• name (String) – unique, alphanumeric project name

{
"version": 0,
"taxonomy": [FACETS]

}

Response JSON Object

• version (integer) – A version identifier.

• taxonomy (array) – An array of Facet objects. The flattened taxonomy.

Status Codes

• 200 OK – ok, return taxonomy

• 404 Not Found – project not found

6.1.4 Update project taxonomy

PUT /v1/project/(string: name)/taxonomy
Update the extended taxonomy. The request will only pass if the version is >= (greater than or equal to) the
currently stored version.

Parameters

• name (string) – project name

{
"version": 0,
"taxonomy": [FACETS]

}

Request JSON Object

• version (integer) – Reference to the version this extension is based on.

• taxonomy (array) – The Facet nodes of the extended taxonomy.

Status Codes

• 400 Bad Request – illegal json, out of date version

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a admin or creator of project project

• 404 Not Found – no project with that name exists

6.1. Project 19

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

6.2 Graph

A graph consists of entries and edges.

GET /v1/entry
Fetch all entries and edges in the database.

{
"nodes": [ENTRIES],
"edges": [EDGES]

}

Response JSON Object

• nodes (array) – An array of Entry objects

• edges (array) – An array of Edge objects

Status Codes

• 200 OK – ok, return graph

6.2.1 Graph Taxonomy

GET /v1/entry/taxonomy
Get a flattened version of the standard SERP taxonomy. The flattened graph assumes an implicit “ROOT” node
object as the top parent.

{
"version": 0,
"taxonomy": [FACETS]

}

Response JSON Object

• version (integer) – A version identifier.

• taxonomy (array) – An array of Facet objects. The flattened taxonomy.

Status Codes

• 200 OK – ok, return taxonomy

6.3 Facet

A node in the taxonomy tree is called a facet.

{
"id": "PLANNING",
"name": "Test planning",
"parent": "SCOPE"

}

Where id is a (per-taxonomy) unique identifier of this facet, name is a descriptive name and parent is the id of
the parent node (since a taxonomy is a tree).

20 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

SERP Connect

6.4 Edge

An edge looks like this:

{
"source": 9,
"target": 13,
"type": "PLANNING"

}

Where source is the origin entry node id, target is the targeted entity node id and type the (SERP) classification
of this relation.

6.5 Entry

An entry is either a classified challenge or research result that a user submitted to the database. Each entry consists of
entry-specific information and a classification. These two pieces of data must be queried separately. See Find entry by
id and Get entry taxonomy.

6.5.1 Find entry by id

GET /v1/entry/(int: entry_id)
Retrieve information of an entry specified by entry_id.

Parameters

• entry_id (int) – entry’s unique id

Response Headers

• Content-Type – application/json

{
"id": 55,
"hash": "YOnPVli1utklw1a3LXiw9pBl6gmpsd4BUabV9I1UyhA=",
"type": "research",
"contact": "space_monkey@planet.zoo",
"reference": "An In-Depth study of the Space Monkey Phenomenon",
"doi": "doi:xyz",
"description": null,
"date": null,
"pending": false

}

Response JSON Object

• id (integer) – a (recycled) unique id

• hash (string) – unique hash of this information

• type (string) – challenge or research

• contact (string) – not used

• reference (string) – only valid for research type entries, lists relevant references

• doi (string) – only valid for research type entries, optional, the DOI of a related paper

6.4. Edge 21

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

SERP Connect

• date (string) – currently broken, a standard javascript date

• pending (boolean) – is entry pending admin approval

Status Codes

• 200 OK – ok, return information

• 400 Bad Request – entry_id must be an int

• 404 Not Found – no entry with that id exists at the moment (it might have existed but was
deleted)

6.5.2 Get entry taxonomy

GET /v1/entry/(int: entry_id)/taxonomy
Retrieve the taxonomy of a specific entry.

Parameters

• entry_id (int) – entry’s unique id

Response Headers

• Content-Type – application/json

{
"INFORMATION": [

"No data currently collected"
],
"SOLVING": [

"unspecified"
],
"PLANNING": [

"testing environment trade-off (simulated, real system production)",
"testing phase trade-off",
"testing-level trade-off (function, interaction)",
"automation trade-off"

]
}

Response JSON Object

• <key> (array) – each key corresponds to a classification with entities

Status Codes

• 200 OK – ok, return entry taxonomy

• 400 Bad Request – entry_id must be an int

• 404 Not Found – no entry with that id exists at the moment (it might have existed but was
deleted)

6.5.3 Submit new entry

POST /v1/entry/new
Submit a new entry.

Request JSON Object

22 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

• entryType (string) – either challenge or research

• collection (int) – unique id of collection to add entry to

• reference (string) – only required for research entries, a list of references

• doi (string) – optional for research entries, a DOI of this publication

• description (string) – only required for challenge entries, describing the challenge

• serpClassification (json) – the SERP classification

• date (string) – javascript date text representation

Example request json:

{
"entryType": "challenge",
"collection": 2,
"description": "how to do software dev without cookies?",
"date": "Mon Sep 28 1998 14:36:22 GMT-0700 (PDT)",
"serpClassification": {

"IMPROVING": ["cookies for software dev"],
"INFORMATION": ["hungry hungry devs"]

}
}

Example response:

{
"message": "ok"

}

Status Codes

• 400 Bad Request – bad request

• 401 Unauthorized – must be logged in to submit new entries

• 403 Forbidden – must have verified email addr before submitting entries, must be member
of collection

6.5.4 Edit existing entry

PUT /v1/entry/(int: entry_id)

Edit taxonomy and/or fields of an existing entry. Request is same as Submit new entry, but without a
collection field.

param entry_id unique id of entry

type entry_id int

Example request:

{
entryType: "challenge",
description: "how to do software dev without cookies?",
date: "Mon Sep 28 1998 14:36:22 GMT-0700 (PDT)",
serpClassification: {

"IMPROVING": ["cookies for software dev"],

(continues on next page)

6.5. Entry 23

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

SERP Connect

(continued from previous page)

"INFORMATION": ["hungry hungry devs"]
}

}

Status Codes

• 400 Bad Request – entry_id must be an int

• 403 Forbidden – must be member of at least one of the collections that own the entry

6.6 Account

6.6.1 Authenticate

POST /v1/account/login
Authenticate user.

Status Codes

• 200 OK – ok, user is logged in on the returned session token

• 400 Bad Request – email/passw combination is invalid

6.6.2 Register an account

POST /v1/account/register
Register new user.

Status Codes

• 200 OK – ok, registration email has been sent

• 400 Bad Request – email is already registered

6.6.3 Reset password

The password reset process is simple:

• User clicks ‘reset my password’ and enters email

• Email is sent to the email address (1)

• User clicks on link in received email

• Backend checks token in url, sets session flag and forwards to frontend

• User enters new password and submits new password

• User is now logged in and the old password has been replaced

POST /v1/account/reset-password
Send a password reset request. Matches (1) in the description above.

Status Codes

• 200 OK – ok

24 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

SERP Connect

GET /v1/account/reset-password?(string: token)
Consume the reset token and return a new, flagged, session id. Forwards to frontend.

Parameters

• token (string) – a querystring value of the reset token found in the email

Status Codes

• 302 Found – ok, forwarding to frontend

• 400 Bad Request – invalid password reset token

Only requests with an attached session id that is considered authenticated (i.e. after Authenticate) are allowed access
to routes below.

6.6.4 Check login status

GET /v1/account/login
Test if session is authenticated/user is logged in.

Status Codes

• 200 OK – ok logged in

• 401 Unauthorized – no not logged in

6.6.5 Get friends of a user

GET /v1/account/friends

Parameters

• email (String) – entry’s unique email

["turtle@rock.gov", "zebra@afri.ca"]

Response JSON Object

• emails (array) – an array of emails related to the users email including the users email.

6.6.6 Get collections

GET /v1/account/collections
Query a list of collections that the currently authenticated user is a member of.

Parameters

• project (String) – include only collections in this project

Response Headers

• Content-Type – application/json

[{ "name": "rick's best systems", "id": 2 }]

Response JSON Array of Objects

• name – non-unique name of the collection

6.6. Account 25

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

SERP Connect

• id – unique id of the collection

6.6.7 Query self

GET /v1/account/self
Get an at-a-glance snapshot of stats and data about the current user.

Response Headers

• Content-Type – application/json

{
"email": "zoo@world.gov",
"trust": "Admin",
"collections": [COLLECTIONS]
"entries": [ENTRIES]

}

Response JSON Object

• email (string) – user’s email

• trust (string) – trust level (see Trust)

• collections (array) – An array of collection objects, equivalent to Get collections

• entries (array) – An array of approved/pending Entry objects this user has submitted.

6.6.8 Logout

POST /v1/account/logout
Logout this user and reset the session.

Status Codes

• 200 OK – ok

6.6.9 Delete account

POST /v1/account/delete
WARNING - Delete the currently authenticated user.

6.6.10 Change password

POST /v1/account/change-password
Change authentication password. Does not require subsequent requests to re-authenticate.

Request JSON Object

• old (string) – old password

• new (string) – new password

Status Codes

• 200 OK – ok

• 400 Bad Request – wrong old password

26 Chapter 6. API

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

SERP Connect

6.6.11 Get collection invites

GET /v1/account/invites
Query list of collections have user is invited to. Return equivalent to Get collections.

6.6.12 Query user by email

GET /v1/account/(string: email)
Perform Query self but target a specific user. Returns same output.

Parameters

• email (string) – email of user

Status Codes

• 200 OK – ok

• 400 Bad Request – invalid email

6.7 Collection

6.7.1 Create new collection

POST /v1/collection/
Create a new collection.

Parameters

• name (string) – the collection’s name (doesn’t have to be unique).

Status Codes

• 400 Bad Request – must provide name

• 401 Unauthorized – must be logged in to create new collections

6.7.2 Get collection graph

GET /v1/collection/(int: id)/graph
Query the node graph of entries and entities.

Parameters

• id (int) – collection id

{
"nodes": [ENTRIES],
"edges": [EDGES]

}

Response JSON Object

• nodes (array) – An array of Entry objects.

• edges (array) – An array of Edge objects.

Status Codes

6.7. Collection 27

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

SERP Connect

• 400 Bad Request – id must be an integer

• 404 Not Found – no collection with that id exists

6.7.3 Get statistics

GET /v1/collection/(int: id)/stats
Query number of members and entries in this collection.

Parameters

• id (int) – collection id

{
"members": 2,
"entries": 9

}

Response JSON Object

• members (int) – number of users, excluding invited, that connected to this collection

• entries (int) – number of entries that are connected to this collection

Status Codes

• 400 Bad Request – id must be an integer

• 404 Not Found – no collection with that id exists

6.7.4 Get collection project

GET /v1/collection/(int: id)/project
Query the project this collection extends.

Parameters

• id (int) – collection id

{
"name": "serp",
"link": "http://serpconnect.cs.lth.se"

}

Status Codes

• 400 Bad Request – id must be an integer

• 404 Not Found – no collection with that id exists

6.7.5 Get entries

GET /v1/collection/(int: id)/entries
Query entries in this collection.

Parameters

• id (int) – collection id

28 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

[Entry, Entry, ..., Entry]

Response JSON Array of Objects

• Entry – An Entry object.

Status Codes

• 400 Bad Request – must provide id, id must be an integer

• 404 Not Found – no collection with that id exists

Only requests with an attached session id, where the user is directly connected to the specified collection, are allowed
access to these routes.

6.7.6 Accept an invite

POST /v1/collection/(int: id)/accept
Accept an invitation to join a specific collection.

Parameters

• id (int) – collection id

Status Codes

• 400 Bad Request – must provide id, id must be an integer, must be invited to that exception

• 404 Not Found – no collection with that id exists

Only requests with an attached session id, where the user is directly connected to the specified collection, are allowed
access to these routes.

6.7.7 Send an invite

POST /v1/collection/(int: id)/invite
Invite a user to a collection.

Parameters

• id (int) – collection id

Request JSON Object

• name (string) – name of the collection

Status Codes

• 400 Bad Request – must provide id, id must be an integer

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7. Collection 29

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

6.7.8 Leave a collection

POST /v1/collection/(int: id)/leave
Leave the collection.

Parameters

• id (int) – collection id

Status Codes

• 400 Bad Request – must provide id, id must be an integer

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7.9 Remove an entry

POST /v1/collection/(int: id)/removeEntry
Remove an entry from the collection. If the entry isn’t included in any other collections it is removed.

Parameters

• id (int) – collection id

Request JSON Object

• entryId (int) – id of entry to remove

Status Codes

• 400 Bad Request – must provide id, id must be an integer

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7.10 Add an existing entry

POST /v1/collection/(int: id)/addEntry
Add an existing entry to the collection. This will copy the specified entry. The classifications where the facet
exists in both taxonomies are copied.

Parameters

• id (int) – collection id

Request JSON Object

• entryId (int) – id of entry to add

Status Codes

• 400 Bad Request – must provide id, id must be an integer

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

30 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

6.7.11 Get members of a collection

GET /v1/collection/(int: id)/members
Query members in this collection.

Parameters

• id (int) – collection id

[User, ..., User]

Response JSON Array of Objects

• User – An Account object.

Status Codes

• 400 Bad Request – must provide id, id must be an integer

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7.12 Get the extended taxonomy

GET /v1/collection/(int: id)/taxonomy
Query the extended taxonomy of this collection. Facet objects returned by this query will reference the standard
serp taxonomy, which must be queried separately.

Parameters

• id (int) – collection id

{
"version": 0,
"taxonomy": [FACETS]

}

Response JSON Object

• version (integer) – Version identifier. Important for updating the taxonomy.

• taxonomy (array) – The Facet nodes of the extended taxonomy.

Status Codes

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7.13 Update the extended taxonomy

PUT /v1/collection/(int: id)/taxonomy
Update the extended taxonomy. The request will only pass if the version is >= (greater than or equal to) the
currently stored version.

6.7. Collection 31

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

Parameters

• id (int) – collection id

{
"version": 0,
"taxonomy": [FACETS]

}

Request JSON Object

• version (integer) – Reference to the version this extension is based on.

• taxonomy (array) – The Facet nodes of the extended taxonomy.

Status Codes

• 400 Bad Request – illegal json, out of date version

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7.14 Reclassify some entities

POST /v1/collection/(int: id)/reclassify
Replace old facets with new facets for some entities.

Parameters

• id (int) – collection id

{
"oldFacetId": "PEOPLE",
"newFacetId": "STRANGE-PEOPLE",
"entities": [213, 255]

}

Request JSON Object

• oldFacetId (string) – The facet id that is to be replaced.

• newFacetId (string) – The replacement facet id.

• entity (array) – ids of the entities that are to be reclassified.

Status Codes

• 400 Bad Request – illegal json

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

32 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

6.7.15 Get all the entities

GET /v1/collection/(int: id)/entities
Get all the entities.

Parameters

• id (int) – collection id

[
{

"id": 222,
"text": "Regression testing"

}
]

Response JSON Array of Objects

• id – id of the entity

• text – user text of the entity

Status Codes

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7.16 Query the classification

GET /v1/collection/(int: id)/classification
Get all the entities grouped by taxonomy facet.

Parameters

• id (int) – collection id

[
{

"facetId": "PEOPLE",
"text": ["Shifty chimpanzees", "Rectangular red birds"]

}
]

Response JSON Array of Objects

• facetId – id of the Facet

• text – text of the entities classified with this facet

Status Codes

• 401 Unauthorized – must be logged in

• 403 Forbidden – must be a member of the collection

• 404 Not Found – no collection with that id exists

6.7. Collection 33

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

SERP Connect

6.8 Admin

Only requests with an attached session id, where user’s trust level is Admin, are allowed access to these routes.

GET /v1/admin
Check if current user (via session token) is an admin.

Status Codes

• 200 OK – user is an admin

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

GET /v1/admin/pending
Get all pending entries.

[Entry, Entry, ..., Entry]

Response JSON Array of Objects

• Entry – An Entry object.

Status Codes

• 200 OK – ok, return pending entries

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

GET /v1/admin/collections
Get all collections that the admin is NOT member of

[Collection, Collection, ..., Collection]

Response JSON Array of Objects

• Collection – A Collection object.

Status Codes

• 200 OK – ok, return collections

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

POST /v1/admin/delete-collection
Delete a collection

Parameters

• entry (int) – ID of collection to delete.

Status Codes

• 200 OK – ok, collection got deleted

• 400 Bad Request – entry is not an int

• 401 Unauthorized – user is not logged in

34 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

SERP Connect

• 403 Forbidden – user is not an admin

• 404 Not Found – no such collection exists

GET /v1/admin/collections-owned-by
Return names of all collections user is owner of

Parameters

• email – email of the user

Status Codes

• 200 OK – ok, return collections

• 400 Bad Request – no email was given

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

POST /v1/admin/accept-entry
Accept a pending entry.

Parameters

• entry (int) – ID of entry to accept.

Status Codes

• 200 OK – ok, entry is approved

• 400 Bad Request – entry is not an int

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

• 404 Not Found – no such entry exists

POST /v1/admin/reject-entry
Reject a pending entry.

Parameters

• entry (int) – ID of entry to reject.

Status Codes

• 200 OK – ok, entry is rejected

• 400 Bad Request – entry is not an int

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

• 404 Not Found – no such entry exists

POST /v1/admin/delete-user
Delete a user with a given email

Parameters

• email – email of the user to be deleted

Status Codes

• 200 OK – ok, user got deleted

6.8. Admin 35

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

SERP Connect

• 400 Bad Request – no email was given

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

POST /v1/admin/delete-entry
Delete entry with a given entry id

Parameters

• entryId – id of the entry

Status Codes

• 200 OK – ok, entry got deleted

• 400 Bad Request – entry is not an int

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

• 404 Not Found – no such entry exists

PUT /v1/admin/set-trust
Set trust level of a specific user.

Parameters

• email (string) – Email of user affected user.

• trust (string) – New trust level (Admin, Verified, User, Registered, Unregistered).

Status Codes

• 200 OK – ok, user has new trust level

• 400 Bad Request – invalid trust level, must provide email, must provide trust, no such user
exists

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

GET /v1/admin/users
Get all users.

[User, User, ..., User]

Response JSON Array of Objects

• User – An Account object.

Status Codes

• 200 OK – ok, return users

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

GET v1/admin/is-collection-owner

param id id of the collection

36 Chapter 6. API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

SERP Connect

type id int

Return true if the admin is owner of the collection

Status Codes

• 200 OK – ok, return boolean

• 401 Unauthorized – user is not logged in

• 403 Forbidden – user is not an admin

6.8. Admin 37

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

SERP Connect

38 Chapter 6. API

CHAPTER 7

Documentation

Most documentation is written in reStructuredText but it is ok to use markdown as well. Markdown rendering uses
recommonmark.

• Install pip: instructions

• pip install -r requirements.txt

• Use entr to watch files, rebuild and run a webserver:

• cd docs/ && find ./ | entr -d -r 'sphinx-build . docsbin/
&& cd docsbin/ && python -SimpleHTTPServer

• or cd docs/ && make watch

39

https://github.com/rtfd/recommonmark
https://packaging.python.org/installing/#install-pip-setuptools-and-wheel
http://entrproject.org/

SERP Connect

40 Chapter 7. Documentation

CHAPTER 8

Sessions

Some notes on session management:

• A session is mainly a cookie (JSESSIONID) that has some data on the server

• Data on server is so far only “email” _or_ “resetemail” - used for authentication

• Server uses in-memory session store (sessions are destroyed on reboot/update)

Pippo handles all session stuff (store, creation and destruction), and we only interact with the session by invoking
rc.setSession("..", "..") or rc.getSession("...").

8.1 Domains

The connect project assumes a two-domain setup:

• A web server for serving the website itself (domain.xyz)

• A web server running connect (api.domain.xyz)

This means that all API requests are cross-domain-resource-sharing (CORS) requests.

41

SERP Connect

42 Chapter 8. Sessions

CHAPTER 9

Trust

All accounts have a trust level that is used throughout the API to determine authorization:

• Admin (99999): Can do anything, really

• Verified (9999): Can submit entries directly, bypassing the approval/rejection phase

• User (999): Can submit entries, but they must be approved/rejected by an admin

• Registered (99): Can create collections

• Unregistered (9): ??

A user is initially considered as registered until they have verified their email, at which point they are automatically
promoted to user status. Only admins can promote accounts to verified or admin status (actually, they can set trust
level freely).

43

SERP Connect

44 Chapter 9. Trust

CHAPTER 10

Collections

A collection is a neo4j object with a :collection label. All users that are members of the collection has a relation
of type :MEMBER_OF pointing to the collection. The user who created the collection is considered the owner and has
an additional relationship with type :OWNER. It is possible to invite any email to a collection.

10.1 Inviting existing members

If the email already exists in the database an email will be sent and accept/reject links will be added to user’s invitations
page.

10.2 Inviting non-existing members

If the email doesn’t exist in the database an email will be sent to the email asking the owner to create an account. If the
person creates an account with the invited email within 1 week the user will have a pending invitation to the collection
at the users pending invitations page.

This is achieved by creating a temporary user with the email-address and with trust level unregistered. This temporary
user has the pending invite linked to its account. If the user ever registers with that email the users account credits
will be merged with the temporary account. A periodic thread will run every 12 hours and clean up unregistered users
which are older than one week old to avoid flooding the database (CleanupUsers.java).

10.3 Invite responses

When a user accepts or rejects an invitation the user who invited the new user will get an email of which action was
taken. If a temporary user gets deleted it will send a reject email.

45

SERP Connect

10.4 Leaving a collection

A collection member can leave the collection voluntarily or be kicked by the collection owner.

If a collection owner leaves the collection the collection and all related relations are destroyed.

• The collection node itself is detached and deleted.

• Pending invites (relations) to that collection are deleted.

• Entries in the collection are removed and will be deleted if they no longer are attached to any collection.

10.5 Extending the taxonomy

The purpose of extending the taxonomy is to classify entities in a more detailed way than what can be achieved with
the base taxonomy. This can only be done by the owner of a collection and is done on the search page by filtering by a
specific collection and then clicking on one of the nodes of the taxonomy at the top. From there, the user can add and
remove leaves and change how the entities are classified.

46 Chapter 10. Collections

CHAPTER 11

Import

Entries can be imported from a CSV or json file. On the submit page click on the button “Import” and select a file. A
new collection will be made when importing the file and a name for that collection has to be specified.

11.1 CSV

In addition to choosing a collection name, whether Research or Challenge entries are to be imported has to be specified.
Another thing that can be specified is what delimiter should be used for the CSV file. Default is comma, other choices
are semi-colon, colon, tab, and many more.

A taxonomy leaf delimiter should also be specified. The delimiter is used to separate the leaves for a taxonomy node.
For example, if a cell looks like (test|test2) and gets mapped to some taxonomy node and the leaf delimiter is “|”, the
value of that entry will be an array consisting of [“test, “test2”].

The first row in the CSV, meaning the headers, will be mapped to the following attributes:

• Reference

• DOI

• Description

• Contact

• Date

• Intervention

• Solving

• Adapting

• Assessing

• Improving

• Planning

47

SERP Connect

• Design

• Execution

• Analysis

• People

• Information

• Sut

• Other

On the left hand side of each node, there is a dropdown menu. This is used to specify how the entries should be mapped.
If the alternative “only if related free-text examples are extracted” is selected, only the attributes that correspond to
non-empty values in the CSV will be selected for that entry. If the alternative “for all entries” is selected, that attribute
will be selected for all of the entries in the following way: If the cell is empty, the value will be “unspecified” and
otherwise it will be the value that was in the cell.

On the right hand side of each node, there is a dropdown menu and a “+” icon. The dropdown is used to specify which
header to map to the current node. If the “+” is pressed, the “+” will be turned into a “-” and another dropdown menu
and “+” icon will appear. This means that a node can be mapped to multiple columns in the CSV. For the nodes that
are not part of the taxonomy, the string values in the different columns will be concatenated. If the node is a taxonomy
leaf, the string values in the different columns will be added to an array. The dropdown menus can be discarded by
pressing the “-” next to a dropdown menu.

If the required attributes (e.g. Reference for research entries and Description for challenge entries) are not entered they
will still get the value “unspecified” so that the entries are able to be submitted from the queue (since those attributes
can’t be empty). They can be edited later.

A json object will be made for every row in the CSV according to the selected mapping. Every column in each row
(or, a combination of columns depending on how they were mapped) will correspond to a part of the json object. For
example, if a CSV header called “Abstract” was mapped to “description”, the “description” field of the json objects
will get the value of the cell in the columns under the CSV header “Abstract”.

The json objects will then be converted to entries and be put in the queue.

11.2 JSON

Importing the json file is a lot simpler than importing the CSV file, only the collection name has to be specified.

The file content has to be one list of json objects and in the same way as for the CSV, the json objects will then be
converted to entries and queued. If there are invalid entries (e.g. no Reference for research entries or no Description
for challenge entries), a message will pop up saying which entries were invalid (or how many, depending on how many
there are) and the user will be asked if he/she wants to continue adding the valid entries or exiting.

48 Chapter 11. Import

CHAPTER 12

Export

A brief description on how to export entries from the system to a CSV file.

12.1 Method

For each collection on the profile page, there exists an option to export that collection. To do so, the user has to specify
a filename and also a CSV delimiter and a taxonomy leaf delimiter.

The CSV delimiter is straight-forward and specifies what should separate the values in the CSV.

The taxonomy leaf delimiter is used to separate the leaves for the taxonomy nodes. For example, if some taxonomy
node has the value [“test”, “test2”], and the leaf delimiter is set to “|”, the value of that cell in the CSV will be
(test|test2).

The file will, as is standard, be downloaded to the users Downloads folder.

49

SERP Connect

50 Chapter 12. Export

CHAPTER 13

Admin

13.1 Delete user

When logged in as an admin go to profile->users. To delete a user press the cross next to the users account level. When
deleting a user a confirmation box will appear. If the user is owner of any collection a second confirmation box will
appear warning which collections will be destroyed when deleting this user.

13.2 Delete collection

When logged in as an admin go to profile->all collections. To delete the collection press the delete button. A confir-
mation box will appear before the deletion is complete.

13.3 Delete entry

When logged in as an admin go to search. Press any entry that should be deleted. In the information box of the entry
press the delete button. A confirmation box will appear.

51

SERP Connect

52 Chapter 13. Admin

CHAPTER 14

Import

How to add entries to the system as a user.

14.1 Submitting

Add entries via the submit page.

14.2 Importing

Bulk importing entries.

53

SERP Connect

54 Chapter 14. Import

CHAPTER 15

Installing

How to setup the server.

15.1 Prerequisites

• An email account, credentials and server settings.

15.2 Compiling

• git clone https://github.com/serpconnect/backend

• cd backend

• mvn compile package

• The compiled server is now in target/connect-X.Y.Z.zip

15.3 Deploying

• Assuming connect-X.Y.Z.zip and application.properties are in current dir.

• unzip connect-X.Y.Z.zip

• cp application.properties connect-X.Y.Z

• cd connect-X.Y.Z

• java -jar connect.jar

• The server is now running using the external configuration. If no config. file is present the embedded is used
instead.

55

SERP Connect

56 Chapter 15. Installing

CHAPTER 16

Performance

Benchmarks for performance regressions are yet to be written. The current performance is ok for a modest number
of users. As the overhead incurred by jcypher is very big it is a worthwhile investment to keep the number of API
requests as low as possible.

16.1 Frontend

The performance of the website is largely determined by database size. Especially home, explore and search pages are
sensitive to database size. All pages that fire many small requests will benefit from a faster neo4j driver. Other pages
could benefit from moving computation or filterting from the client to the server (e.g. search, graph generation).

16.2 Backend

The backend has been profiled during a number of requests to different endpoints and the results all point to the neo4j
driver jcypher. Both the driver itself and its dependencies add a big (~100-600ms) overhead in request processing, i.e.
time spent before the request hits the wire.

An example:

Finding a user by an email address is a common operation. The cypher query: MATCH (u:user {email:
{addr}}) RETURN u. The test was carried out against an endpoint that only did this query. The timings below are
the amount of milliseconds spent to perform the database query.

• jcypher/java: 11ms

• node-neo4j/nodejs: 3ms

57

http://jcypher.iot-solutions.net/
http://jcypher.iot-solutions.net/

SERP Connect

58 Chapter 16. Performance

HTTP Routing Table

/v1
GET /v1/account/(string:email), 27
GET /v1/account/collections, 25
GET /v1/account/friends, 25
GET /v1/account/invites, 27
GET /v1/account/login, 25
GET /v1/account/reset-password?(string:token),

24
GET /v1/account/self, 26
GET /v1/admin, 34
GET /v1/admin/collections, 34
GET /v1/admin/collections-owned-by, 35
GET /v1/admin/pending, 34
GET /v1/admin/users, 36
GET /v1/collection/(int:id)/classification,

33
GET /v1/collection/(int:id)/entities,

33
GET /v1/collection/(int:id)/entries, 28
GET /v1/collection/(int:id)/graph, 27
GET /v1/collection/(int:id)/members, 31
GET /v1/collection/(int:id)/project, 28
GET /v1/collection/(int:id)/stats, 28
GET /v1/collection/(int:id)/taxonomy,

31
GET /v1/entry, 20
GET /v1/entry/(int:entry_id), 21
GET /v1/entry/(int:entry_id)/taxonomy,

22
GET /v1/entry/taxonomy, 20
GET /v1/project, 18
GET /v1/project/(string:name)/taxonomy,

19
GET v1/admin/is-collection-owner, 36
POST /v1/account/change-password, 26
POST /v1/account/delete, 26
POST /v1/account/login, 24
POST /v1/account/logout, 26
POST /v1/account/register, 24

POST /v1/account/reset-password, 24
POST /v1/admin/accept-entry, 35
POST /v1/admin/delete-collection, 34
POST /v1/admin/delete-entry, 36
POST /v1/admin/delete-user, 35
POST /v1/admin/reject-entry, 35
POST /v1/collection/, 27
POST /v1/collection/(int:id)/accept, 29
POST /v1/collection/(int:id)/addEntry,

30
POST /v1/collection/(int:id)/invite, 29
POST /v1/collection/(int:id)/leave, 30
POST /v1/collection/(int:id)/reclassify,

32
POST /v1/collection/(int:id)/removeEntry,

30
POST /v1/entry/new, 22
POST /v1/project, 18
PUT /v1/admin/set-trust, 36
PUT /v1/collection/(int:id)/taxonomy,

31
PUT /v1/entry/(int:entry_id), 23
PUT /v1/project/(string:name)/taxonomy,

19

59

	Getting Started
	Contributing
	Development
	Testing
	Graph
	API
	Documentation
	Sessions
	Trust
	Collections
	Import
	Export
	Admin
	Import
	Installing
	Performance
	HTTP Routing Table

